Latihan Soal dan Pembahasan Relasi dan Fungsi

Berikut adalah latihan soal dan pembahasan mengenai materi Relasi dan Fungsi. Soal dibuat dalam bentuk pilihan ganda (multple Choice).



Soal
1. Relasi yang tepat dari diagram panah di bawah adalah ...


A. Kurang dari
B. Setengah dari
C. Lebih dari
D. Kuadrat dari

Pembahasan
B. Setengah dari





2. Suatu fungsi f(x) = 5 - 3x, nilai dari f(-2) adalah ....
A. -1
B. 2
C. 7
D. 11

Pembahasan
f(x) = 5 - 3x
f(-2) = 5 - 3(-2)
f(-2) = 5 + 6
f(-2) = 11 (D)


3. Jika f(x) = 3x + 2 dan f(a) = -10, nilai a adalah ....
A. 3
B. 1
C. -3
D. -4

Pembahasan
f(x) = 3x + 2
f(a) = 3a + 2
f(a) = -10
3a + 2 = -10
3a = -10 - 2
3a = -12
a = $\frac{-12}{3}$
a = -4 (D)


4. Yang merupakan pemetaan atau fungsi adalah ....

A.

B.

C.

D.

Pembahasan

C.
Karena, setiap anggota A memiliki pasangan tepat satu dengan anggota B

5. Himpunan pasangan berurutan berikut merupakan fungsi adalah ....
A. {(2, a),(3,b),(4,a),(5,c)}
B. {(a,2),(a,3),(a,4),(a,5)}
C. {(x,2),(x, 3),(y,4),(y,5)}
D. {(2,a),(3,b),(4,c),(4,d)}

Pembahasan
A.{(2, a),(3,b),(4,a),(5,c)}
Karena anggota domain memiliki pasangan tepat satu dengan kodomain

6. Jika f(x) = ax + b, f(3) = 5 dan f(7) = 13, maka f(10) = .....
A. 19
B. 17
C. 15
D. 11

Pembahasan
f(x) = ax + b
f(3) = 5 dapat ditulis menjadi 3a + b = 5
f(7) = 13 dapat ditulis menjadi 7a + b = 13
3a + b = 5
7a + b = 13 - (dikurangkan dengan metode bersusun)
-4a + 0 = -8
-4a = -8

a = $\frac{-8}{-4}$
a = 2
Kemudian, kita substitusikan a = 2 ke salah satu persamaan, dalam hal ini menggunakan persamaan 3a + b = 5
3a + b = 5
3(2) + b = 5
6 + b = 5
b = 5-6
b = -1

Jadi rumus fungsi f dapat ditulis
f(x) = ax + b
f(x) = 2x + (-1)
f(x) = 2x - 1

f(10) = 2(10) - 1
f(10) = 20 - 1
f(10) = 19 (A)

7. Jika A = {faktor dari 2} dan B = {huruf vokal}, banyaknya pemetaan dari A ke B adalah ....
A. 50
B. 32
C. 25
D. 10

Pembahasan
A = {faktor dari 2} atau A = {1, 2} dengan demikian n(A) = 2
B = {huruf vokal} atau B = {a, e, i, o, u} dengan demikian n(B) = 5
Banyak pemetaan dari A ke B = $n(B)^{n(A)}$ = $5^2$ = 25 (C)

8. Diagram kartesius berikut yang merupakan fungsi adalah ....
A.

B.

C.

D.

Pembahasan

C.
Karena, anggota domain/daerah asal mempunyai satu pasangan pada daerah kawan/kodomain


9. Diketahui himpunan :
A = {1, 2, 3, 4} dan B = {a, b, c, d}.
Banyaknya korespondensi satu-satu yang mungkin dari A ke B adalah ....
A. 4
B. 8
C. 16
D. 24

Pembahasan
n(A) = 4
n(B) = 4
dengan demikian n = n(A) = n(B) = 4 (syarat korespondensi satu-satu terpenuhi n(A) = n(B)
Banyak korespondensi satu-satu = n! = 4! = 4 x 3 x 2 x 1 = 24 (D)

10. Diketahui f : x → -5x + 2. Nilai untuk x = 4 adalah ....
A. 20
B. 18
C. -18
D. -22

Pembahasan
f : x → -5x + 2
f(x) = -5x + 2

f(4) = -5(4) + 2
f(4) = -20 + 2
f(4) = -18 (C)

11. Diketahui fungsi h(x) = 3x + 6. Jika h(a) = 9, maka nilai a = ....
A. 1
B. 2
C. 3
D. 4

Pembahasan
h(x) = 3x + 6
h(a) = 3a + 6

h(a) = 9
3a + 6 = 9
3a = 9-6
3a = 3
a = $\frac{3}{3}$
a = 1 (A)

12. Suatu fungsi dirumuskan dengan g(x) = px + 5. Jika g(3) = -1, maka nilai p adalah ....
A. 3
B. 2
C. -2
D. -3

Pembahasan
g(x) = px + 5
g(3) = 3p + 5

g(3) = -1
3p + 5 = -1
3p = -1 - 5
3p = -6
p = $\frac{-6}{3}$
p = -2 (C)

13. Ditentukan f(x) = x + 2, dengan daerah asal {x | -2 ≤ x < 3, x bilangan bulat}. Daerah hasil fungsi tersebut adalah ....
A. {0, 1, 2, 3, 4}
B. {0, 1, 2, 3, 4, 5}
C. {4, 3, 2, 1, 0, -1}
D. {5, 4, 3, 2, 1}

Pembahasan
f(x) = x + 2
Daerah asal/domain = {x | -2 ≤ x < 3, x bilangan bulat}
Daerah asal/domain= {-2, -1, 0, 1, 2}

f(x) = x + 2
f(-2) = -2 + 2 = 0
f(-1) = -1 + 2 = 1
f(0) = 0 + 2 = 2
f(1) = 1 + 2 = 3
f(2) = 2 + 2 = 4
Jadi, daerah hasil/range fungsi = {0, 1, 2, 3, 4} (A)

14. Untuk menyatakan suatu bentuk "relasi" dari dua buah himpunan dapat disajikan dalam beberapa cara. yaitu ...
A. Diagram Garis, Koordinat Kartesius, Pasangan berurutan
B. Diagram Panah, Koordinat Kartesius, Pasangan berurutan
C. Koordinat Kartesius,Diagram Panah, Penulisan berurutan
D. Diagram Panah, Koordinat Kartesius, Diagram Lingkaran

Pembahasan
B. Diagram Panah, Koordinat Kartesius, Pasangan berurutan

15. B = {(0,0), (1,2), (2,4), (3,6), (4,8), (5,10)} Daerah hasil atau rank dari himpunan tersebut adalah ......
A. {-2, -1, 0, 1, 2, 3}
B. {0, 1, 2, 3, 4, 5}
C. {0, 2, 4, 6, 8, 10}
D. {0, 1, 2, 4, 6, 8}

Pembahasan
Daerah Hasil adalah anggota daerah kawan/kodomain yang memiliki pasangan dengan daerah asal/domain.
C. {0, 2, 4, 6, 8, 10}

16. "Relasi Khusus yang memasangkan setiap anggota A dengan tepat satu satu pada anggota B" Pernyataan diatas merupakan definisi dari ...
A. Translasi
B. Korespondensi
C. Relasi
D. Fungsi

Pembahasan
D. Fungsi


0 Response to "Latihan Soal dan Pembahasan Relasi dan Fungsi"

Post a Comment

Terima kasih atas komentar yang telah anda berikan

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel